Stability analysis of multi-term fractional-differential equations with three fractional derivatives
نویسندگان
چکیده
Necessary and sufficient stability instability conditions are obtained for multi-term homogeneous linear fractional differential equations with three Caputo derivatives constant coefficients. In both cases, fractional-order-dependent as well fractional-order-independent characterisations of properties obtained, in terms the coefficients equation. The theoretical results exemplified particular cases Basset Bagley-Torvik equations, a equation an inextensible pendulum damping terms, harmonic oscillator.
منابع مشابه
Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab
The term fractional calculus is more than 300 years old. It is a generalization of the ordinary differentiation and integration to non-integer (arbitrary) order. The subject is as old as the calculus of differentiation and goes back to times when Leibniz, Gauss, and Newton invented this kind of calculation. In a letter to L’Hospital in 1695 Leibniz raised the following question (Miller and Ross...
متن کاملStudy on stability analysis of distributed order fractional differential equations with a new approach
The study of the stability of differential equations without its explicit solution is of particular importance. There are different definitions concerning the stability of the differential equations system, here we will use the definition of the concept of Lyapunov. In this paper, first we investigate stability analysis of distributed order fractional differential equations by using the asympto...
متن کاملCascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملStability Analysis of Fractional Differential Equations with Unknown Parameters
In this paper, the stability of fractional differential equations (FDEs) with unknown parameters is studied. FDEs bring many advantages to model the physical systems in nature or man-made systems in industry. In fact, real objects are generally fractional and fractional calculus has gained popularity in modelling physical and engineering systems in the last few decades in parallel to advancemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2021
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2020.124751